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A d~~rnp~~t~~~ procedure is proposed for stochastic systems reducitife to standard form with a 

spinning phase. Ii is proved that the slow motion cxmverges to a diffusion process. 

1. WE SHALL study systems whose dynamics are described by the equations 

x‘= ~~~,~,~~r))+E~~~~,~) 

6’= o(x) + EH(X,e,5(t))+ 8QXX.e) 

XERfl, BeR,, x(O)=a 

where c(t) is a stochastic process with sample paths in I?,, F(x, 8, {), etc. are deterministic 
vectors, and E is a small parameter. 

Asymptatic methods have been used to investigate equations of the type (1.1) when o(x) = r_aO = const 
and systems are reducible to standard form. It has been proved that under certain conditions (the most 
general formulation may be found in fl]) the process x(r, E) converges weakly as E +O [2] to a diffusion 
process x&) which is a solution of the stochastic equation 

where z = &, W(Z) is an 1 -dimensional standard Wiener process. A considerable amount of work has been 
done on a rigorous proving of the passage to the limit from (1.1) to (1.2) for uf=w,; detailed bibfio- 
graphies may be found in [l, 3,4]_ Similar results have been obtained for equations with spinning phase 
where 4 =&O) [4,5]. 

Using an approach developed in [4, 51, we shall establish asymptotic decomposition of 
motions far (1.1) as 6 -+ 0. 

We shall assume that the coefficients of Eqs (1.1) satisfy the following conditions, The 
functions F and H may be written in the form 

where t(t) are stationary stochastic processes with zero mean and sample paths in D’[O, c=) [2]. 
The processes c(r) are defined in a standard probability space [2, 61; for brevity, only the 
dependence on time t will be indicated explicitly; the dependence on the random argument, 
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characterizing the sample path, will be omitted; FO, H, are matrices of the appropriate 
dimensions. 

The components of the vector process k(t) are supposed to satisfy conditions A 

MS(t) = 0 

M~M,~...~~S(ul)loS(~)lo...~~~~~lot~ c,a,(u, -t)...a,(u, --u,_~) 

ostsu I...< Un, n = 1,2,3 

where z”= z-Mz, Mz(t) is the mathematical expectation and M,z(t) is the conditional 
mathematical expectation of z(t). 

The constant c,, depends on M I e(t) P, and the bounded positive definite functions a, must 
satisfy the condition 

It has been 
processes and 
PI. 

proved [l, 41 that these conditions hold, in particular, for stationary normal 
bounded uniformly strong mixing processes with a suitable mixing coefficient 

The deterministic coefficients of system (1.1) satisfy conditions B in the domain 0 E R,, x E S, 
where S is a bounded sphere in R,, the following conditions hold uniformly in X, 8: 

1. F,, Ho, G and D are periodic or quasi-periodic, and bounded as functions of 0; 
2. F, is continuous and twice continuously differentiable with respect to x and 0; G is 

continuous and continuously differentiable with respect to n and 8; G is continuous and 
continuously differentiable with respect to X; D is bounded; 

3. the frequency O(X) z o. > 0 is continuous and twice continuously differentiable. 
To construct an approximating diffusion process x,(z), we will use the diffusion approx- 

imation procedure of [l, 71, adapted to the analysis of fast phase systems as in [4,5]. 

We will begin with the necessary definitions [7]. Let r(r) be a scalar stochastic process and LLf”(r) be 

the generating differential operator of the process, defined by 

LEfE(~)=6% 6-'[M,fe(~+S)-ff"(Q] (1.3) 
+ 

It follows from (1.3) [l, 7] that 

M,fe(T)-f”(~)=~M~~~fE(u)du (1.4) 
z 

(all equalities are understood in the weak sense [l, 71). 

In particular, if f’(z)=f(x,(z)), h w ere x is a deterministic function and x,(r) is a solution of some fl ) 
perturbed system, then (1.4) shows how to evaluate the functional M,f(x,(T)) for paths of the perturbed 
system. 

In particular, if x,(z) = .x0(r), where x,(r) is a solution of Eq. (1.2), then L’ = L, where [l, 6,7] 

L = b’(x)d+ ’ TrA(x) a2 
ax -z 

-, A=oo’ 
i3X 

(throughout this paper, the prime denotes transposition), and (1.4) becomes 

(1.5) 
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ReIations (1.4~(1.6) indicate a way of calculating and comparing functionals on paths of the perturbed 
system and the diffusion system. 

The asym@otic approach is based on the following assertion 11, 71. Suppose that the follow- 
ing conditions hold for E E (0, EJ, z E[O, 7J: 

1. for any initial x,(O) = a E K, where K is a compact set in R,, a unique solution X,,(T) B r>“]O, 
w) of Eq. (1.2) exists; 

2. f(x) E RI is a sufficiently smooth function with compact support; 
3. for every functionf(x) and any T < 00, a function f”(z) exists in the domain of L” such that 

fiio MifE (2) - f& (9) t= 0 

limMILEfE(Z)-Lf(XE(~))I=O 
E-30 

where X,(T) is a solution of the perturbed system and L is the generating operator (1.5); 
4. the sequence xp(r) is weakly compact in o”[O, m) [2] and x,(O) =x,(O). 
Then the sequence X,(T) converges weakly as E+O to the diffusion process x0(z) with 

generating operator L . 
It has been shown 111 that conditions (2)-(4) may be weakened, replacing xJc> with a 

suitable truncated process X:(T) = ~~(~)~~~~~) and the functions f’(z) and f(x) by truncated 
functions f*(r) and f”(x)=f(x)q,(x), where n&)=(1, In IGN; 0, x > N). Our assumption 
that the sequence x,(z) is weakly compact justifies the passage to the limit as N + 00. 

2. Relying on these conditions, we shall construct an approximating operator L for system 
(1.1). The coalition is divided into two steps. 

Construction of f*(r). Let z =a+, x=x(& E)= x,(z), 8= e(r, e) = 6,(z) be a solution of 
system (1.1). On the sample path x(t, E) we define an arbitrary compactly-supported function 
f(x) E CT,, which vanishes for I x I> N. Define fti(z) in terms of f(x) by the formula 

f~N(Z)=rf(X)+~(n,8,t)+e2f,(x,e,t)311Ntx) (2.1) 

where the coefficients fi and fi are determined in such a way as to satisfy conditions (1.7) and 
(1.8). 

From (1.1) and (1.3) we obtain 

where L: is the generating operator 

L;f(n,B,t) = A~y A--‘[M,f(x(t +A&,W+A,e),t+ A)-f(x,O,t)] (2.3) 
+ 

Following [I, 4,5], we construct h so that the coefficient of e-’ in (2.3) vanishes. Define 

fi(~,W = f;(,)~M,,(*.cp(u).S(u))du (2.4) 

where 

cp(u) = qP*‘(u) = 8 + o(x>(u - t) e.5) 

is a solution of the generating system 
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It has been shown [11 43 that for functions of type (2,4) the operator L: can be evaluated by 
simple differentiation with respect to t, treating the operator M, as “frozen”. The, using (2.51, 
we get 

where alI the terms are evaluated at the point (x, 0, t). This equality relies on the obvious 
relationships 

Substituting (2.7) into (2.2) and using (Ll), we obtain 

The f~ctiun &(x3 0, t) is inducted so as to eIim&te the secultrr ~orn~nent~ of fi in tf. By 
analogy with previous results [4,5], we write 

It can be shown that for a stationary process c(t) the quantities MQ(x, 8, t) are independent 
of t and 

Obviously, I3 = 0 for the deterministic function Q,. The quantities S, are given by 

(2.13) 

(it is assumed that the limits exist uniformIy in Ix I< N). 
Thus, the function f&(%) is defined by (2.11, (2.4) and (2.9). 

~~~~~~ of r&e o~r~~~ L_ It fulIows from (2.3j1 (2,gf and (29) that 
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where Rif are the remainder terms in (2.8) and (2.14), considered as operators acting on j 
We will now express the operators Z$(x) in explicit form. It follows from (2.11)-(2.13) that 

q2(x,e) = Mfi&,W)~(x,%~) 

q3(xIe) = i$&)G’(X,e) 

(2.16) 

where xi, F’ and G’ are the ith components of the relevant vectors. If f, is the function 
defined by (2.4), then 

Using (2.5), we write 

F,~‘(x,w),~ = tF,(‘w+ O(X)(U - 0, sw,,, + 
+#w + O(X)(U - 0, sw0, (x)(u - t) (2.18) 

In exactly the same way 

fia(x,e,t) = Sww,e + 0w4 - 0, whfu (2.19) 
t 

We now substitute (2.17)-(2.19) into (2.16) and average as in (2.13). Using the well-known 
property of the mathematical expectation MM, = M [6], we obtain the final result 

(2.20) 

(2.21) 

bj(X) = /ji $-fdOjBj(x,e,~)&, i= 1,2,3 OD 0 

A(x) = a(x) + a’(x) = o(x)o’(x) 

(2.22) 

(2.23) 

a&,e,s) = MW(x,e+ w(x)s,&+ s))Fj(x,e,k(t)] 

The fact that the integrands of (2.22) and (2.23) are independent of r follows from the 
stationarity of g(r). 
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Define the operator L as 

a2 
L = b’(x)$+$TrA(x);i;i-, b= ~bj 

j=l 
(2.24) 

Obviously if w = o, = const, then 4 = 0 and the expression (2.21) is identical-apart from the 
notation-with the standard formulae [3,4]. 

To prove that conditions (1.7) and (1.8) hold, it will suffice to show that if Ix Id N, t E R,, 
8 E R,, then for all f(n) E C, 

Mtfi(n,B,t)l c 00, M]R#(r)] < 00, j = 1,2 (2.25) 

As similar estimates have been established in [4, 51, we will omit the proof. We note that 
inequalities (2.25) follow from conditions A and B (see above). 

The validity of conditions (1.7) and (1.8) also implies that the sequence X:(T) is weakly 
compact [l]. 

If conditions A and B are satisfied and the limits (2.22) and (2.23) exist, then the coefficients 
of the operator (2.24) satisfy the conditions LJ(x)EC~, arcs. Consequently [6], a diffusion 
process x0(r) exists with generating operator (2.24). 

We have thus proved the following theorem. 

Theorem 1. Suppose that the coefficients of system (1.1) satisfy conditions A and B in the 
domain x ES, 8 E RI, t E R, and that the limits (2.22) and (2.23) exist there. 

Then for ZE [0, T] the process n(t, E)= x,(z) converges weakly as E -+ 0 to a diffusion 
process x,,(r) with generating operator (2.24). 

Remark. It is obvious that these results also remain valid in the case when w = W(T). The “slow” time z 

may be treated as an additional variable 

x n+l = 2, -%,I = E2, x,+,(O)=0 

When that is done the coefficients of the operator (2.24) are defined by (2.20)-(2.23) but 4 = 0. 

3. We will now consider a few examples. 

Oscillations of a pendulum of variable length suspended from a vertically vibrating point (Fig. 1). When 

the dissipation and perturbation are small and the length varies slowly, the equations of the pendulum 
reduce to 

mC P e 

tfr) 
t 1 O g 

(3.1) 

FIG. 1. FIG. 2. 
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where z is the angular deviation of the pendulum from the vertical, f(z) is the? slowly varying length, 
z = &‘t, S(E) is the a~l~r~t~~~ of the point af suspension --a st~tiona~ normal process with zero mean 
and spectral density S(O) and e is a small parameter. 

The chauge of variables 

reduces Eq. (3.1) to standard fcxm [g] 

In this case 

Substituting (3.4) into (2.21)-(2.23), we obtain 

(3.31 

It follows from Theorem 1 that the process x(t, cl)= x&r) converges weakly 8s E -+O to a diffusion 
process n,(z) satisfying the equation 

(3.6) 

We shall estimate the rapt-moan-square amplitude of the oscillations, FE* =Mx~* Since the PI-ocess is 
weakly convergent, it folXow$ that over a Cinx interval 0~5~ 2’ the process m,(2) remains in the E- 
neighbou~h~~d of the furxtion %(z) = I@&@ defined as the solution of the equation f6] 

dmo ~~~=~2~(~~~~~~~~~, m#)=rr2 (3-f) 

f3.9 
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It follows from (3.6) and (3.8) that the solution of system (3.7) is asymptotically stable if 

(3.9) 

If this condition is satisfied, m,(z) remains in the &-neighbourhood of the exponentially decreasing 
function m,(~). 

Condition (3.9) may be replaced by the stronger, but more easily verified, condition 2b,,(z)+c$(z) < 0 
for all z > 0, i.e. 

If I, = 0, w = const, condition (3.10) reduces to a well-known condition for root-mean-square stability 

[31* 

Fast rotation of a plane pendulum with randomly vibrating axk of suspension (fig. 2). The equation of 

rotation of the pendulum in the vertical plane is 

Jd213/dT2 -ml(g+d2{” /dz2)sin0=0 

x=0, 8=0, dO/dz=yE 
(3.11) 

where J is the moment of inertia about the axis of rotation 0, m is the mass of the pendulum, 1 is the arm 
OC, and r(z) is the vertical displacement of the point of suspension. It is assumed that S”(T) is a small 

but fast perturbation, so that 

mU_‘r”(7)=&{(Z/E2), E<<l 

Setting T/E* = t, we write 

8” = &*(A2 +E-‘c(r))sine 

f=O. e=o. 0’=y 

where A* = mlgJ_‘, y = q’. 

We are considering a situation with fast rotation: y’*h. 

Reducing (3.12) to standard form, we obtain 

i = g(f)she+E2c(e), x(o)= y 

e.=x, e(o)=0 

System (3.13) has the form of (1.1) with 

(3.12) 

(3.13) 

F=&)sinO, G=L2sin& H=O, O=X, @)=5”(t) (3.14) 

Consequently, bI =4 =0, c=O, b3 =XS=(x), 0’ =XS( x ), w h ere S(w) is the spectral density of k(r). 

Thlis, x (t, E) converges weakly as E + 0 to the diffusion process x,(z) with the generating operator 

(3.15) 

We will estimate the residence time 7E when the process x,(z) stays in the a-neighbourhood of the 

stationary solution x = y. It follows from the weak convergence condition that MT, + MT, as E + 0, 
where z, is the similar residence time for the process X,(T). In turn [6], MT, = V(y), where V(x) is a 

solution of the equation 
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W(x)=-1, V[y(l+u)]=V[y(l-a)]=0 (3.16) 

L being the operator (3.15). Equation (3.16) is solvable by quadratures. To emphasize the physical mean- 
ing of the solution, let us assume that a is fairly small. Then 

Mze = V(y) = 2a2yZ /S(r) (3.17) 

The quantity z, could be considered as a measure of the closeness of the motion to steady-state motion: 
the longer the system stays in the neighbourhood of a stationary point, the closer the solution is to steady- 
state. In particular, Mz, + 00 as 5 + 0. In turn, it follows from (3.17) that Mz, decreases as S(r) increases 
and MT,, -_j 0 as S(y) + 0, i.e. the system shows a “resonance” acceleration effect. 
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