DECOMPOSITION OF MOTIONS IN NON-LINEAR SYSTEMS WITH SPINNING PHASE UNDER RANDOM PERTURBATIONS \dagger

A. S. Kovaleva
Moscow
(Received 17 May 1991)

Abstract

A decomposition procedure is proposed for stochastic systems reducible to standard form with a

 spinning phase. It is proved that the slow motion converges to a diffusion process.1. We shall study systems whose dynamics are described by the equations

$$
\begin{align*}
& x=\varepsilon F(x, \theta, \xi(t))+\varepsilon^{2} G(x, \theta) \tag{1.1}\\
& \theta=\omega(x)+\varepsilon H(x, \theta, \xi(t))+\varepsilon^{2} D(x, \theta) \\
& x \in R_{n}, \quad \theta \in R_{1}, \quad x(0)=a
\end{align*}
$$

where $\xi(t)$ is a stochastic process with sample paths in $R_{i}, F(x, \theta, \xi)$, etc. are deterministic vectors, and ε is a small parameter.

Asymptotic methods have been used to investigate equations of the type (1.1) when $\omega(x)=\omega_{0}=$ const and systems are reducible to standard form. It has been proved that under certain conditions (the most general formulation may be found in [1]) the process $x(t, \varepsilon)$ converges weakly as $\varepsilon \rightarrow 0$ [2] to a diffusion process $x_{0}(\tau)$ which is a solution of the stochastic equation

$$
\begin{equation*}
d x_{0}=b\left(x_{0}\right) d \tau+\sigma\left(x_{0}\right) d w, \quad x_{0}(0)=a \tag{1.2}
\end{equation*}
$$

where $\tau=\varepsilon^{2} t, w(\tau)$ is an l-dimensional standard Wiener process. A considerable amount of work has been done on a rigorous proving of the passage to the limit from (1.1) to (1.2) for $\omega=\omega_{0}$; detailed bibliographies may be found in [1,3, 4]. Similar results have been obtained for equations with spinning phase where $\xi=\xi(\theta)[4,5]$.

Using an approach developed in [4,5], we shall establish asymptotic decomposition of motions for (1.1) as $\varepsilon \rightarrow 0$.

We shall assume that the coefficients of Eqs (1.1) satisfy the following conditions. The functions F and H may be written in the form

$$
F=F_{0}(x, \theta) \xi(t), \quad H=H_{0}(x, \theta) \xi(t)
$$

where $\xi(t)$ are stationary stochastic processes with zero mean and sample paths in $D^{t}[0, \infty)$ [2]. The processes $\xi(t)$ are defined in a standard probability space $[2,6]$; for brevity, only the dependence on time t will be indicated explicitly; the dependence on the random argument,
characterizing the sample path, will be omitted; F_{0}, H_{0} are matrices of the appropriate dimensions.

The components of the vector process $\xi(t)$ are supposed to satisfy conditions A

$$
\begin{aligned}
& \mathbf{M} \xi(t)=0 \\
& \mathbf{M}\left|\mathbf{M}_{t}\left[\ldots\left[\left[\xi\left(u_{1}\right)\right]^{0} \xi\left(u_{2}\right)\right]^{0} \ldots \xi\left(u_{n}\right)\right]^{0}\right| \leqslant c_{n} \alpha_{1}\left(u_{1}-t\right) \ldots \alpha_{n}\left(u_{n}-u_{n-1}\right) \\
& 0 \leqslant t \leqslant u_{1} \ldots \leqslant u_{n}, \quad n=1,2,3
\end{aligned}
$$

where $z^{0}=z-\mathrm{M} z, \mathrm{M} z(t)$ is the mathematical expectation and $\mathrm{M}_{s} z(t)$ is the conditional mathematical expectation of $z(t)$.

The constant c_{n} depends on $M \mid \xi(t)^{r}$, and the bounded positive definite functions α_{n} must satisfy the condition

$$
\int_{0}^{\infty} u^{2} \alpha_{n}(u) d u<\infty
$$

It has been proved [1, 4] that these conditions hold, in particular, for stationary normal processes and bounded uniformly strong mixing processes with a suitable mixing coefficient [2].
The deterministic coefficients of system (1.1) satisfy conditions B in the domain $\theta \in R_{1}, x \in S$, where S is a bounded sphere in R_{n}, the following conditions hold uniformly in x, θ :

1. F_{0}, H_{0}, G and D are periodic or quasi-periodic, and bounded as functions of θ;
2. F_{0} is continuous and twice continuously differentiable with respect to x and $\theta ; G$ is continuous and continuously differentiable with respect to x and $\theta ; G$ is continuous and continuously differentiable with respect to $x ; D$ is bounded;
3. the frequency $\omega(x) \geqslant \omega_{0}>0$ is continuous and twice continuously differentiable.

To construct an approximating diffusion process $x_{0}(\tau)$, we will use the diffusion approximation procedure of [1,7], adapted to the analysis of fast phase systems as in [4,5].

We will begin with the necessary definitions [7]. Let $f^{e}(\tau)$ be a scalar stochastic process and $L^{\prime \prime} f^{\prime \prime}(\tau)$ be the generating differential operator of the process, defined by

$$
\begin{equation*}
L^{\varepsilon} f^{\varepsilon}(\tau)=\lim _{\delta \rightarrow 0_{+}} \delta^{-1}\left[M_{\tau} f^{\varepsilon}(\tau+\delta)-f^{\varepsilon}(\tau)\right] \tag{1.3}
\end{equation*}
$$

It follows from (1.3) $[1,7]$ that

$$
\begin{equation*}
\mathrm{M}_{\tau} f^{\varepsilon}(T)-f^{\varepsilon}(\tau)=\int_{\tau}^{T} \mathrm{M}_{\tau} L^{\varepsilon} f^{\varepsilon}(u) d u \tag{1.4}
\end{equation*}
$$

(all equalities are understood in the weak sense [1, 7]).
In particular, if $f^{e}(\tau)=f\left(x_{\mathrm{e}}(\tau)\right.$), where $f(x)$ is a deterministic function and $x_{\mathrm{e}}(\tau)$ is a solution of some perturbed system, then (1.4) shows how to evaluate the functional $M_{\tau} f\left(x_{e}(T)\right.$) for paths of the perturbed system.

In particular, if $x_{\varepsilon}(\tau)=x_{0}(\tau)$, where $x_{0}(\tau)$ is a solution of Eq. (1.2), then $L^{\ell}=L$, where $[1,6,7]$

$$
\begin{equation*}
L=b^{\prime}(x) \frac{\partial}{\partial x}+\frac{1}{2} \operatorname{Tr} A(x) \frac{\partial^{2}}{\partial x^{2}}, \quad A=\sigma \sigma^{\prime} \tag{1.5}
\end{equation*}
$$

(throughout this paper, the prime denotes transposition), and (1.4) becomes

$$
\begin{equation*}
\mathrm{M}_{\tau} f\left(x_{0}(T)\right)-f\left(x_{0}(\tau)\right)=\int_{\tau}^{\tau} \mathrm{M}_{\tau} L f\left(x_{0}(u)\right) d u \tag{1.6}
\end{equation*}
$$

Relations (1.4)-(1.6) indicate a way of calculating and comparing functionals on paths of the perturbed system and the diffusion system.

The asymptotic approach is based on the following assertion [1, 7]. Suppose that the following conditions hold for $\varepsilon \in\left(0, \varepsilon_{0}\right], \tau \in[0, T]$:

1. for any initial $x_{0}(0)=a \in K$, where K is a compact set in R_{n}, a unique solution $x_{0}(\tau) \in D^{n}[0$, ∞) of Eq. (1.2) exists;
2. $f(x) \in R_{1}$ is a sufficiently smooth function with compact support;
3. for every function $f(x)$ and any $T<\infty$, a function $f^{\ell}(\tau)$ exists in the domain of L^{ε} such that

$$
\begin{gather*}
\sup _{\tau, \varepsilon} \mathrm{M}\left|f^{\varepsilon}(\tau)\right|<\infty \tag{1.7}\\
\lim _{\varepsilon \rightarrow 0} \mathrm{M}\left|f^{\varepsilon}(\tau)-f\left(x_{\varepsilon}(\tau)\right)\right|=0 \tag{1.8}\\
\lim _{\varepsilon \rightarrow 0} \mathrm{M}\left|L^{\varepsilon} f^{\varepsilon}(\tau)-L f\left(x_{\varepsilon}(\tau)\right)\right|=0
\end{gather*}
$$

where $x_{\varepsilon}(\tau)$ is a solution of the perturbed system and L is the generating operator (1.5);
4. the sequence $x_{\varepsilon}(\tau)$ is weakly compact in $D^{n}[0, \infty)$ [2] and $x_{\varepsilon}(0)=x_{0}(0)$.

Then the sequence $x_{\varepsilon}(\tau)$ converges weakly as $\varepsilon \rightarrow 0$ to the diffusion process $x_{0}(\tau)$ with generating operator L.

It has been shown [1] that conditions (2)-(4) may be weakened, replacing $x_{\mathrm{f}}(\tau)$ with a suitable truncated process $x_{\varepsilon}^{N}(\tau)=x_{s}(\tau) \eta_{N}\left(x_{e}\right)$ and the functions $f^{\varepsilon}(\tau)$ and $f(x)$ by truncated functions $f^{\text {eN }}(\tau)$ and $f^{N}(x)=f(x) \eta_{N}(x)$, where $\eta_{N}(x)=\{1,|x| \leqslant N ; 0, x>N\}$. Our assumption that the sequence $x_{\varepsilon}(\tau)$ is weakly compact justifies the passage to the limit as $N \rightarrow \infty$.
2. Relying on these conditions, we shall construct an approximating operator L for system (1.1). The construction is divided into two steps.

Construction of $\mathrm{f}^{\text {ev }}(\tau)$. Let $\tau=\varepsilon^{2} t, \quad x=x(t, \varepsilon)=x_{\varepsilon}(\tau), \theta=\theta(t, \varepsilon)=\theta_{\varepsilon}(\tau)$ be a solution of system (1.1). On the sample path $x(t, \varepsilon)$ we define an arbitrary compactly-supported function $f(x) \in C_{3}$, which vanishes for $|x|>N$. Define $f^{\ell N}(\tau)$ in terms of $f(x)$ by the formula

$$
\begin{equation*}
f^{\varepsilon N}(\tau)=\left[f(x)+\varepsilon f_{1}(x, \theta, t)+\varepsilon^{2} f_{2}(x, \theta, t)\right] \eta_{N}(x) \tag{2.1}
\end{equation*}
$$

where the coefficients f_{1} and f_{2} are determined in such a way as to satisfy conditions (1.7) and (1.8).

From (1.1) and (1.3) we obtain

$$
\begin{equation*}
L^{\varepsilon} f^{\varepsilon}(\tau)=\varepsilon^{-1}\left(f_{x}^{\prime} F+L_{l}^{\varepsilon} f_{1}\right)+f_{x}^{\prime} G+L_{t}^{\varepsilon} f_{2} \tag{2.2}
\end{equation*}
$$

where L_{i}^{ℓ} is the generating operator

$$
\begin{equation*}
L_{t}^{\varepsilon} f(x, \theta, t)=\lim _{\Delta \rightarrow 0_{+}} \Delta^{-1}\left[\mathrm{M}_{t} f(x(t+\Delta, \varepsilon), \theta(t+\Delta, \varepsilon), t+\Delta)-f(x, \theta, t)\right] \tag{2.3}
\end{equation*}
$$

Following $[1,4,5]$, we construct f_{1} so that the coefficient of ε^{-1} in (2.3) vanishes. Define

$$
\begin{equation*}
f_{1}(x, \theta, t)=f_{x}^{\prime}(x) \int_{t}^{\infty} \mathrm{M}_{1} F(x, \varphi(u), \xi(u)) d u \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(u)=\varphi^{x, \theta, t}(u)=\theta+\omega(x)(u-t) \tag{2.5}
\end{equation*}
$$

is a solution of the generating system

$$
\begin{align*}
& d x / d u=0, \quad d \varphi / d u=\omega(x) \tag{2.6}\\
& x(t)=x, \quad \varphi(t)=0, \quad u \geqslant t
\end{align*}
$$

It has been shown [1,4] that for functions of type (2.4) the operator L_{i}^{E} can be evaluated by simple differentiation with respect to t, treating the operator M_{t} as "frozen". The, using (2.5), we get

$$
\begin{equation*}
L_{4}^{\varepsilon} f_{1}=f_{1 x} x^{*}+f_{1 \theta} \theta^{*}-f_{1 \theta} \omega-f_{x}^{\prime} F \tag{2.7}
\end{equation*}
$$

where all the terms are evaluated at the point (x, θ, t). This equality relies on the obvious relationships

$$
\partial F / \partial \varphi=\partial F / \partial \theta, \quad \partial F / \partial t=-\omega \partial F / \partial \varphi
$$

Substituting (2.7) into (2.2) and using (1.1), we obtain

$$
\begin{equation*}
L^{\varepsilon} f^{\varepsilon}(\tau)=f_{1 x}^{\prime}(F+\varepsilon G)+f_{1 \theta}(H+\varepsilon D)+f_{x}^{\prime} G+L_{t}^{\mathrm{E}} f_{2} \tag{2.8}
\end{equation*}
$$

The function $f_{2}(x, \theta, t)$ is constructed so as to climinate the secular components of f_{2} in θ. By analogy with previous results $[4,5]$, we write

$$
\begin{gather*}
f_{2}(x, \theta, t)=\sum_{j=1}^{3}\left[I_{j}(x, \theta, t)-S_{j}(x, \theta)\right] \tag{2.9}\\
I_{j}=\int_{t}^{\infty}\left[\mathrm{M}_{i} Q_{j}(x, \varphi(u), u)-\mathrm{M} Q_{j}(x, \varphi(u), u)\right] d u \tag{2.10}
\end{gather*}
$$

where

$$
\begin{equation*}
Q_{1}=f_{1 x}^{*} F, \quad Q_{2}=f_{1 \theta} H, \quad Q_{3}=f_{x}^{\prime} G \tag{2.11}
\end{equation*}
$$

It can be shown that for a stationary process $\xi(t)$ the quantities $\mathrm{M} Q_{j}(x, \theta, t)$ are independent of t and

$$
\mathbf{M} Q_{j}(x, \theta, t)=q_{j}(x, \theta)
$$

Obviously, $I_{3}=0$ for the deterministic function Q_{3}. The quantities S_{j} are given by

$$
\begin{align*}
& S_{j}(x)=\int_{0}^{\theta}\left[q_{j}(x, \psi)-\bar{q}_{j}(x)\right] d \psi \tag{2.12}\\
& \bar{q}_{j}(x)=\lim _{\Gamma \rightarrow \infty} \frac{1}{\Gamma} \int_{0}^{\Gamma} q_{j}(x, \psi) d \psi \tag{2.13}
\end{align*}
$$

(it is assumed that the limits exist uniformly in $|x| \leqslant N$).
Thus, the function $f^{e N}(\tau)$ is defined by (2.1), (2.4) and (2.9).
Construction of the operator L. It follows from (2.3), (2.8) and (2.9) that

$$
\begin{gather*}
L_{\eta}^{\varepsilon} f_{2}=-f_{1 x}^{\prime} F-f_{10} H-f_{x}^{\prime} G+f_{2 x} x^{*}+\sum_{j=1}^{2} \mathrm{I}_{j \theta}(\theta-\omega)+\sum_{j=1}^{3} \bar{q}_{j}(x) \tag{2.14}\\
L^{\varepsilon} f^{\varepsilon N}(\tau)=\left[\sum_{j=1}^{n} \bar{q}_{j}\left(x_{\varepsilon}(\tau)\right)+\varepsilon\left(R_{1}+\varepsilon R_{2}\right) f\left(x_{\varepsilon}(\tau)\right)\right] \eta_{N}\left(x_{\varepsilon}\right) \tag{2.15}
\end{gather*}
$$

where $R_{j} f$ are the remainder terms in (2.8) and (2.14), considered as operators acting on f.
We will now express the operators $\bar{q}_{i}(x)$ in explicit form. It follows from (2.11)-(2.13) that

$$
\begin{align*}
& q_{1}(x, \theta)=\sum_{i=1}^{n} \mathbf{M} f_{1 x_{i}}(x, \theta, t) F^{i}(x, \theta, \xi(t)) \\
& q_{2}(x, \theta)=\mathbf{M} f_{1 \theta}(x, \theta, t) H(x, \theta, t) \tag{2.16}\\
& q_{3}(x, \theta)=\sum_{i=1}^{n} f_{x_{i}}(x) G^{i}(x, \theta)
\end{align*}
$$

where x_{i}, F^{i} and G^{i} are the i th components of the relevant vectors. If f_{1} is the function defined by (2.4), then

$$
\begin{equation*}
f_{1 x_{i}}=\sum_{j=1}^{n} f_{x_{j}}(x) \int_{t}^{\infty} M_{t} F_{x_{i}}^{j}(x, \varphi(u), \xi(u)) d u+\sum_{j=1}^{n} f_{x_{i} x_{j}}(x) \int_{M_{t}}^{\infty} F^{j}(x, \varphi(u), \xi(u)) d u \tag{2.17}
\end{equation*}
$$

Using (2.5), we write

$$
\begin{align*}
& F_{x_{i}}^{j}(x, \varphi(u), \xi(u))=\left[F_{z_{i}}^{j}(z, \theta+\omega(x)(u-t), \xi(u))\right]_{z=x}+ \\
& +F_{\theta}^{j}(x, \theta+\omega(x)(u-t), \xi(u)) \omega_{x_{i}}(x)(u-t) \tag{2.18}
\end{align*}
$$

In exactly the same way

$$
\begin{equation*}
f_{1 \theta}(x, \theta, t)=\int_{t}^{\infty} M_{1} F_{\theta}(x, \theta+\omega(x)(u-t), \quad \xi(u)) d u \tag{2.19}
\end{equation*}
$$

We now substitute (2.17)-(2.19) into (2.16) and average as in (2.13). Using the well-known property of the mathematical expectation $\mathrm{MM}_{t}=\mathrm{M}$ [6], we obtain the final result

$$
\begin{gather*}
\bar{q}_{1}(x)=\left[b_{1}^{\prime}(x)+b_{3}^{\prime}(x)\right] f_{x}(x)+1 / 2 \operatorname{Tr} A(x) f_{x x}(x) \tag{2.20}\\
\bar{q}_{2}(x)=b_{2}^{\prime}(x) f_{x}(x), \quad \bar{q}_{3}(x)=\bar{G}^{\prime}(x) f_{x}(x) \\
\bar{G}(x)=\lim _{\Gamma \rightarrow \infty} \frac{1}{\Gamma} \int_{0}^{\Gamma} G(x, \theta) d \theta \tag{2.21}\\
b_{j}(x)=\lim _{\Gamma \rightarrow \infty} \frac{1}{\Gamma} \int_{0}^{\Gamma} d \theta \int_{0}^{\infty} B_{j}(x, \theta, s) d s, \quad j=1,2,3 \\
B_{1}^{i}(x, \theta, s)=\sum_{j=1}^{n} \mathrm{M}\left[F_{z_{j}}^{i}(z, \theta+\omega(x) s, \xi(t+s)) F_{j}(x, \theta, \xi(s))\right]_{z=x} \tag{2.22}\\
B_{2}^{i}(x, \theta, s)=\mathrm{M}\left[F_{\theta}^{i}(x, \theta+\omega(x) s, \xi(t+s)) H(x, \theta, s)\right] \\
B_{3}^{i}(x, \theta, s)=s \sum_{j=1}^{n} \mathrm{M}\left[F_{\theta}^{i}(x, \theta+\omega(x) s, \xi(t+s)) \omega_{x_{j}}(x) F_{j}(x, \theta, \xi(t))\right] \\
A(x)=a(x)+a^{\prime}(x)=\sigma(x) \sigma^{\prime}(x) \tag{2.23}\\
a(x)=\lim _{\Gamma \rightarrow \infty} \frac{1}{\Gamma} \int_{0}^{\Gamma} d \theta \int_{0}^{\infty} \alpha(x, \theta, s) d s \\
\alpha_{i j}(x, \theta, s)=\mathrm{M}^{2}\left[F^{i}(x, \theta+\omega(x) s, \xi(t+s)) F^{j}(x, \theta, \xi(t)]\right.
\end{gather*}
$$

The fact that the integrands of (2.22) and (2.23) are independent of t follows from the stationarity of $\xi(t)$.

Define the operator L as

$$
\begin{equation*}
L=b^{\prime}(x) \frac{\partial}{\partial x}+\frac{1}{2} \operatorname{Tr} A(x) \frac{\partial^{2}}{\partial x^{2}}, \quad b=\sum_{j=1}^{3} b_{j} \tag{2.24}
\end{equation*}
$$

Obviously if $\omega=\omega_{0}=$ const, then $b_{3}=0$ and the expression (2.21) is identical-apart from the notation-with the standard formulae [3, 4].
To prove that conditions (1.7) and (1.8) hold, it will suffice to show that if $|x| \leqslant N, t \in R_{1}$, $\theta \in R_{1}$, then for all $f(x) \in C_{3}$

$$
\begin{equation*}
\mathrm{M}\left|f_{j}(x, \theta, t)\right|<\infty, \quad \mathrm{M}\left|R_{j} f(x)\right|<\infty, \quad j=1,2 \tag{2.25}
\end{equation*}
$$

As similar estimates have been established in [4,5], we will omit the proof. We note that inequalities (2.25) follow from conditions A and B (see above).

The validity of conditions (1.7) and (1.8) also implies that the sequence $x_{\varepsilon}^{N}(\tau)$ is weakly compact [1].

If conditions A and B are satisfied and the limits (2.22) and (2.23) exist, then the coefficients of the operator (2.24) satisfy the conditions $b(x) \in C_{1}, a(x) \in C_{2}$. Consequently [6], a diffusion process $x_{0}(\tau)$ exists with generating operator (2.24).

We have thus proved the following theorem.
Theorem 1. Suppose that the coefficients of system (1.1) satisfy conditions A and B in the domain $x \in S, \theta \in R_{1}, t \in R_{1}$ and that the limits (2.22) and (2.23) exist there.

Then for $\tau \in[0, T]$ the process $x(t, \varepsilon)=x_{\varepsilon}(\tau)$ converges weakly as $\varepsilon \rightarrow 0$ to a diffusion process $x_{0}(\tau)$ with generating operator (2.24).

Remark. It is obvious that these results also remain valid in the case when $\omega=\omega(\tau)$. The "slow" time τ may be treated as an additional variable

$$
x_{n+1}=\tau, \quad x_{n+1}=\varepsilon^{2}, \quad x_{n+1}(0)=0
$$

When that is done the coefficients of the operator (2.24) are defined by (2.20)-(2.23), but $b_{3}=0$.
3. We will now consider a few examples.

Oscillations of a pendulum of variable length suspended from a vertically vibrating point (Fig. 1). When the dissipation and perturbation are small and the length varies slowly, the equations of the pendulum reduce to

$$
\begin{align*}
& \frac{d}{d t}\left[l^{2}(\tau) \frac{d z}{d t}\right]+2 \varepsilon^{2} n \frac{d}{d t}[l(\tau) z]+l(\tau)[g+\varepsilon \xi(t)] z=0 \tag{3.1}\\
& z(0)=\zeta, \quad z^{\prime}(0)=v
\end{align*}
$$

Fig. 1.

FIG. 2.
where z is the angular deviation of the pendulum from the vertical, $I(\tau)$ is the slowly varying length, $\tau=\varepsilon^{2} t, \xi(t)$ is the acceleration of the point of suspension-a stationary normal process with zero mean and spectral density $S(\omega)$ and ε is a small parameter.

The change of variables

$$
\begin{align*}
& z=x \cos \theta, \quad z^{2}=-\omega(\tau) x \sin \theta \tag{3.2}\\
& \omega(\tau)=[g / l(\tau)]^{1 / 2}
\end{align*}
$$

reduces Eq. (3.1) to standard form [8]

$$
\begin{align*}
& x=\varepsilon \frac{\xi(t)}{\omega l} x \cos \theta \sin \theta-\varepsilon^{2}\left[\frac{2}{l}\left(l_{\tau}+n\right)+\frac{\omega_{\tau}}{\omega}\right] x \sin ^{2} \theta \tag{3.3}\\
& \theta=\omega+\varepsilon \frac{\xi(l)}{\omega l} \cos ^{2} \theta-\varepsilon^{2}\left[\frac{2}{l}\left(l_{\tau}+n\right)+\frac{\omega_{\tau}}{\omega}\right] \sin \theta \cos \theta \\
& L_{\tau}=d l / d \tau, \quad \omega_{r}=d \omega / d \tau, \quad x(0)=\alpha, \quad \theta(0)=\beta
\end{align*}
$$

In this case

$$
\begin{align*}
& F=(2 \omega l)^{-1} \xi(t) x \sin 2 \theta \\
& H=(2 \omega I)^{-1} \xi(I)(1+\cos 2 \theta) \tag{3,4}\\
& G=-(2 I)^{-1}\left(3 I_{\tau}+4 n\right) x \sin ^{2} \theta
\end{align*}
$$

Substituting (3.4) into (2.21)-(2.23), we obtain

$$
\begin{align*}
& b_{1}=\frac{x}{16} D^{2}, \quad b_{2}=\frac{x}{8} D^{2} \\
& \bar{G}=-\left(\frac{3}{4} \frac{1}{l}+\frac{n}{l}\right) x \tag{3.5}\\
& A_{11}=\sigma^{2}=\frac{x^{2}}{8} D^{2}, \quad D^{2}=\frac{S(20)}{(\omega l)^{2}}
\end{align*}
$$

It follows from Theorem 1 that the process $x(t, \varepsilon)=x_{i}(\tau)$ converges weakly as $\varepsilon \rightarrow 0$ to a diffusion process $x_{0}(\tau)$ satisfying the equation

$$
\begin{align*}
& d x_{0}=b_{0} x_{0} d t+\sigma_{0} x_{0} d w_{*} \quad x_{0}(0)=\alpha \\
& b_{0}=\frac{3}{16} D^{2}-\left(\frac{3}{4} \frac{l_{\tau}}{l}+\frac{n}{l}\right), \quad \sigma_{0}^{2}=\frac{1}{8} D^{2} \tag{3.6}
\end{align*}
$$

We shall estimate the root-mean-square amplitude of the oscillations, $m_{\mathrm{e}}=\mathrm{M} x_{\mathrm{g}}^{2}$. Since the process is weakly convergent, it follows that over a time interval $0 \leqslant \tau \leqslant T$ the process $m_{t}(\tau)$ remains in the ε neighbourhood of the function $m_{0}(\tau)=\mathbf{M} x_{0}^{2}(\tau)$ defined as the solution of the equation [6]

$$
\begin{gather*}
d m_{0} / d \tau=\left[2 b_{0}(\tau)+\sigma_{0}^{2}(\tau)\right] m_{0}, \quad m_{0}(0)=\alpha^{2} \tag{3.7}\\
m_{0}(\tau)=\alpha^{2} \exp \left\{\int_{0}^{\tau}\left[2 b_{0}(s)+\sigma_{0}^{2}(s)\right] d s\right\} \tag{3.8}
\end{gather*}
$$

It follows from (3.6) and (3.8) that the solution of system (3.7) is asymptotically stable if

$$
\begin{equation*}
\int_{0}^{\tau}\left[\frac{D^{2}(s)}{2}-\frac{2 n}{l(s)}\right] d s<\frac{3}{2} \ln \frac{l(\tau)}{l(0)} \tag{3.9}
\end{equation*}
$$

If this condition is satisfied, $m_{\varepsilon}(\tau)$ remains in the ε-neighbourhood of the exponentially decreasing function $m_{0}(\tau)$.

Condition (3.9) may be replaced by the stronger, but more easily verified, condition $2 b_{0}(\tau)+\sigma_{0}^{2}(\tau)<0$ for all $\tau>0$, i.e.

$$
\begin{equation*}
S[2 \omega(\tau)]<[\omega(\tau) l(\tau)]^{2}\left[4 n+3 l_{\tau}(\tau)\right] \tag{3.10}
\end{equation*}
$$

If $l_{\mathrm{r}}=0, \omega=$ const, condition (3.10) reduces to a well-known condition for root-mean-square stability [3].

Fast rotation of a plane pendulum with randomly vibrating axis of suspension (Fig. 2). The equation of rotation of the pendulum in the vertical plane is

$$
\begin{align*}
& J d^{2} \theta / d \tau^{2}-m l\left(g+d^{2} \zeta^{\varepsilon} / d \tau^{2}\right) \sin \theta=0 \tag{3.11}\\
& \tau=0, \quad \theta=0, \quad d \theta / d \tau=\gamma^{\varepsilon}
\end{align*}
$$

where J is the moment of inertia about the axis of rotation O, m is the mass of the pendulum, l is the arm $O C$, and $\zeta^{c}(\tau)$ is the vertical displacement of the point of suspension. It is assumed that $\zeta^{\varepsilon}(\tau)$ is a small but fast perturbation, so that

$$
m U^{-1} \zeta^{\varepsilon}(\tau)=\varepsilon \zeta\left(\tau / \varepsilon^{2}\right), \quad \varepsilon \ll 1
$$

Setting $\tau / \varepsilon^{2}=t$, we write

$$
\begin{align*}
& \theta^{*}=\varepsilon^{2}\left(\lambda^{2}+\varepsilon^{-1} \zeta^{*}(t)\right) \sin \theta \tag{3.12}\\
& t=0, \quad \theta=0, \quad \theta=\gamma
\end{align*}
$$

where $\lambda^{2}=m l g J^{-1}, \gamma=\varepsilon \gamma^{\varepsilon}$.
We are considering a situation with fast rotation: $\gamma^{e} \gg \lambda$.
Reducing (3.12) to standard form, we obtain

$$
\begin{align*}
& x=\varepsilon \xi(t) \sin \theta+\varepsilon^{2} G(\theta), \quad x(0)=\gamma \tag{3.13}\\
& \theta=x, \quad \theta(0)=0
\end{align*}
$$

System (3.13) has the form of (1.1) with

$$
\begin{equation*}
F=\xi(t) \sin \theta, \quad G=\lambda^{2} \sin \theta, \quad H=0, \quad \omega=x, \quad \xi(t)=\zeta^{\prime \prime}(t) \tag{3.14}
\end{equation*}
$$

Consequently, $b_{1}=b_{2}=0, \bar{G}=0, b_{3}=1 / 4 S_{x}(x), \sigma^{2}=1 / 2 S(x)$, where $S(\omega)$ is the spectral density of $\xi(t)$. This, $x(t, \varepsilon)$ converges weakly as $\varepsilon \rightarrow 0$ to the diffusion process $x_{0}(\tau)$ with the generating operator

$$
\begin{equation*}
L=b_{3}(x) \frac{\partial}{\partial x}+\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2}}{\partial x^{2}}=\frac{1}{4} \frac{\partial}{\partial x}\left(S(x) \frac{\partial}{\partial x}\right) \tag{3.15}
\end{equation*}
$$

We will estimate the residence time τ_{ε} when the process $x_{\varepsilon}(\tau)$ stays in the α-neighbourhood of the stationary solution $x=\gamma$. It follows from the weak convergence condition that $M \tau_{e} \rightarrow M \tau_{0}$ as $\varepsilon \rightarrow 0$, where τ_{0} is the similar residence time for the process $x_{0}(\tau)$. In turn [6], $M \tau_{0}=V(\gamma)$, where $V(x)$ is a solution of the equation

$$
\begin{equation*}
L V(x)=-1, \quad V[\gamma(1+\alpha)]=V[\gamma(1-\alpha)]=0 \tag{3.16}
\end{equation*}
$$

L being the operator (3.15). Equation (3.16) is solvable by quadratures. To emphasize the physical meaning of the solution, let us assume that α is fairly small. Then

$$
\begin{equation*}
M \tau_{0}=V(\gamma)=2 \alpha^{2} \gamma^{2} / S(\gamma) \tag{3.17}
\end{equation*}
$$

The quantity τ_{0} could be considered as a measure of the closeness of the motion to steady-state motion: the longer the system stays in the neighbourhood of a stationary point, the closer the solution is to steady state. In particular, $\mathrm{M} \tau_{0} \rightarrow \infty$ as $\xi \rightarrow 0$. In turn, it follows from (3.17) that $\mathrm{M} \tau_{0}$ decreases as $S(\gamma)$ increases and $\mathrm{M} \tau_{0} \rightarrow 0$ as $S(\gamma) \rightarrow \infty$, i.e. the system shows a "resonance" acceleration effect.

REFERENCES

1. KUSHNER H. J., Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory. MIT Press, Cambridge, MA, 1984.
2. BILLINGSLEY P., Convergence of Probability Measures. John Wiley, New York, 1968.
3. DIMENTBERG M. F., Non-linear Stochastic Problems of Mechanical Oscillations. Nauka, Moscow, 1980.
4. KOVALEVA A. S., Control of Oscillatory and Vibro-impact Systems. Nauka, Moscow, 1990.
5. KOVALEVA A. S., The separation of motions in non-linear oscillatory systems with random perturbation. Prikl. Mat. Mekh. 54, 530-536, 1990.
6. GIKHMAN I. I. and SKOROKHOD A. V., Introduction to the Theory of Random Processes. Nauka, Moscow, 1977.
7. ETHIER S. and KURTZ T., Markov Processes: Characterization and Convergence. John Wiley, New York, 1986.
8. MITROPOL'SKII Yu. A., The Averaging Method in Non-linear Mechanics. Naukova Dumka, Kiev, 1971.
